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The binary collision method of Lee and Yang is extended in order to investigate the statistical mechanics 
of a multicomponent mixture of interacting gases obeying Bose-Einstein or Fermi-Dirac statistics. First, 
the case of a mixture of two kinds of hard-sphere spinless bosons is studied and then the generalization is car­
ried over to the case of a mixture of several components consisting of particles with arbitrary spin and 
statistics. An explicit derivation of the fugacity expansion, correct to the second order in the interaction 
parameters, is given. Expressions are derived for the second and third virial coefficients of the system and a 
discussion is given of the salient features of the results obtained. Finally, the case of a binary mixture, with 
one component consisting of bosons and the other of fermions, is considered and the phenomenon of Bose-
Einstein condensation in this system is studied. 

1. INTRODUCTION 

THE problem of investigating in detail the equilib­
rium properties of a multicomponent many-body 

system is of great physical interest. Basically its im­
portance lies in the fact that a comprehensive study of 
these properties leads to an understanding of the 
interactions operating between particles of different 
kinds. Such an understanding, however, becomes pos­
sible only when one compares the experimental results 
with those obtained theoretically on the basis of a cer­
tain assumed law of interaction. Whereas the experi­
mental studies of mixtures have been, and are being, 
carried out rather extensively, the corresponding theo­
retical investigations have remained relatively at a low 
ebb. Nevertheless some such treatments did appear in 
the past but almost invariably they were based on the 
principles of classical statistical mechanics. 

A schematic study on the classical lines of the sta­
tistical thermodynamics of a system composed of several 
components which do not react chemically was made by 
McMillan and Mayer1 who carried out their investiga­
tion on the basis set previously by the pioneering work 
of Mayer and his collaborators2 on the problem of 
imperfect gases and their condensation. 

The first attempt to treat systematically the problem 
of a multicomponent system on the principles of 
quantum statistical mechanics was made by Band3 who, 
closely following the work of McMillan and Mayer, 
carried out an investigation into the properties of mix­
tures of Bose-Einstein and Fermi-Dirac fluids. He 
thereby expressed the distribution functions of the 
problem in terms of "irreducible integrals," formally 
identical with the ones given by McMillan and Mayer 

1 W. G. McMillan and J. E. Mayer, J. Chem. Phys. 13, 276 
(1945); see also J. E. Mayer, J. Phys. Chem. 43, 71 (1939). For 
earlier work, see R. H. Fowler, Statistical Mechanics (Cambridge 
University Press, New York, 1936), Chaps. VIII-X. 

2 J. E. Mayer, J. Chem. Phys. 5, 67 (1937); J. E. Mayer and 
P. G. Ackermann, ibid. 5, 74 (1937); see also, J. E. Mayer and S. 
F. Harrison, ibid. 6, 87, 101 (1938). 

* W. Band, J. Chem. Phys. 16, 343 (1948). 

although their physical significance, due to the presence 
of degeneracy factors, was not quite the same. However, 
the final formulas so obtained were rather too general in 
nature to permit a quantitative interpretation, es­
sentially because the results could not be expressed in 
explicit terms unless the integrals involved were actu­
ally evaluated. The quantum-mechanical problem of 
mixtures has thus remained almost unsolved insofar as 
the explicit derivation of the equation of state and of 
expressions for the various thermodynamical properties 
of the system is concerned. 

Recently, Lee and Yang4 have developed a systematic 
method of studying the statistical mechanics of a low-
density gaseous system of interacting particles in which 
quantum effects are important. The essential feature of 
their treatment is to first separate out the effects of the 
quantum statistics of the problem by expressing the 
grand partition function of the system under study in 
terms of certain functions (the cluster functions) defined 
for a corresponding quantum-mechanical problem with 
Boltzmann statistics. Next, these functions are ex­
pressed, in the form of something like a power series, in 
terms of a binary kernel which, in turn, is obtainable 
from a solution of the relevant two-body problem. Dis­
cussing in detail the case of a single-component system 
composed of hard spheres, Lee and Yang have demon­
strated how their method can be applied in order to 
derive explicit expressions for the various thermo­
dynamical properties of the system. 

We find that the method developed by Lee and Yang, 
referred to as the binary collision method, can be readily 
employed for investigating quantum mechanically the 
equilibrium properties of low-density gaseous mixtures. 
First, we study the case of a simple two-component 
system of interacting particles. In Sec. 2 the problem is 
formulated in the language of cluster operators Uu*q, 
which are the quantum-statistical counterparts of the 

4 T . D. Lee and C. N. Yang, Phys. Rev. 113, 1165 (1959); 116, 
25 (1959). These two papers are referred to in the text as LYI and 
LYII, respectively. 
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corresponding classical Ursell functions. In Sec. 3 we 
frame the rule which enables one to express the functions 
Un*q in terms of the functions Unn* defined for a 
quantum-mechanical Boltzmannian mixture. In Sec. 4 
the functions Unn* are expanded in the powers of three 
binary kernels appropriate for a two-component system 
and further, explicit expressions are derived for these 
kernels in the case of particles (like or unlike) interacting 
through a hard-sphere potential. In Sec. 5 an explicit 
derivation of the fugacity expansion, to the second order 
in the interaction parameters, is carried out for the case 
of a mixture of two kinds of hard-sphere spinless bosons. 

Next, the treatment is extended to the study of a 
multicomponent system. In Sec. 6 we consider the es­
sential amplifications in the theory which are brought 
about by the introduction of more components into the 
two-component system. The additional terms appearing 
in the particular case of a system of hard-sphere spinless 
bosons are explicitly evaluated. In the next section the 
treatment is generalized to the case where the particles 
obey arbitrary statistics and have spins of arbitrary 
values (of course, in conformity with the respective 
statistics). The complete fugacity expansion, to the 
second order in the interaction parameters, is then 
derived for this generalized system. In Sec. 8 explicit 
expressions are obtained for the second and third, pure 
and mixed, virial coefficients of the system. The salient 
features of the various results of this investigation are 
discussed at some length and also the question of the 
application of these results to systems with interactions 
more realistic than the hard-sphere one is briefly 
considered. 

A detailed investigation into the low-temperature 
behavior of a binary mixture of a Bose gas and a Fermi 
gas is indeed of great physical interest, especially be­
cause of its possible bearing on the problem of He3—He4 

mixtures. However, the theory as such is not suited for 
this investigation because it fails to treat the system in 
the region of the lambda transition. In fact, a reformula­
tion of the theory in terms of average occupation num­
bers in momentum space, along the lines suggested by 
the later work of Lee and Yang,5 is essential before this 
particular problem can be tackled successfully by the 
binary collision method. This is done in Sec. 9 where the 
phenomenon of Bose-Einstein condensation in a Bose-
Fermi mixture is considered and the expressions for the 
various physical properties of the system at the con­
densation point are obtained. 

2. FORMULATION OF THE QUANTUM-STATISTICAL 
PROBLEM FOR A BINARY MIXTURE 

We consider a two-component system of particles, N 
belonging to the first component and N* to the second, 
moving in a cubic box of dimensions LXLXL (volume 
L3 = Q), their motion conforming to periodic boundary 

6 T . D. Lee and C. N. Yang, Phys. Rev. 117, 22 (1960); this 
paper is referred to in the text as LYIV. 

conditions. The Hamiltonian of this system would be 
(with ft =1) 

1 AT 1 N* 

HNN*=-~ L v,2 x; V,*3+K, (l) 
2m t - i 2m* t*-i 

where m and m* are the respective masses of the two 
kinds of particles, while V is the potential energy 
operator which consists of a sum over all pairs of par­
ticles constituting the system.6 

We introduce the (probability) operator 

WNN*= exp ( - J & H W ) , (2) 
where 

P=(kT)~K (3) 

The cluster operators Uu* are then defined in terms of 
the operators Wnn* in the same manner as in the case of 
a single-component system : 

r 1 0 ( i ) = iF 1 0 ( i ) ; r 0 i ( i * ) = flMi*), (4) 

r 2 0 ( l ,2) = Ty2o(l,2)-ir10(l)TF1o(2); 

r 1 1 ( l , l * ) = i r 1 1 ( l , l * ) - l F 1 0 ( l ) I F 0 i ( l * ) ; (5) 

r02(i*,2*) = iro2(i*,2*)-iroi(i*)H/oi(2*), 

etc. I t can now readily be shown that the equilibrium 
pressure p and the (partial) particle densities p and p* 
are given by the Mayer equations 

p/kT= lim f ) bip*($)zlz**, (6) 

(I +/*) > 1 

p = lim Z lbn*{ti)zlz*l\ (7) 
Q -> « /, I* = 0 

(I -K*) > l 
and 

P*= lim £ l*bip>(Q)zlz*l\ (8) 
ft — oo U * = 0 

(/ +i*) > i 

where z and z* are, respectively, the "activities" of the 
two components whereas bn* are the fugacity coeffi­
cients : 

6„*(0)=(Z«*!Q)-1Tr(^„»). (9) 

The definitions of the operators introduced above and 
the various relations existing between them remain 
unchanged when we go over to the limit of infinite 
volume. One can show that in this limit 

bii*(tt)->bii*(cc) 

/

+» 

<0, r2, • • • r , ; r 1 . , • • • r , . |17„ . (ao) | 
- 0 0 

0, r2, • • • r*; ri*, • • • r**) 

X<*V2 • • • &*r idhx* • • • dAr*, (10) 
6 In the present investigation, interactions of an order higher 

than the two-body interactions are not considered. 
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where Uu*(<x>) are the U operators for 0 = ° o ; the 
integration here extends over the coordinates of ( /+/* 
— 1) particles. I t may be remarked that in the foregoing 
integral, the position of any one of the ( /+/*) particles 
could be taken as the origin because the validity of the 
result depends simply upon the fact that for one of the 
(l+l*) coordinates fixed, the integration of Uu* over 
the remaining (/+/*— 1) coordinates gives a result inde­
pendent of the position of the fixed coordinate. This, in 
turn, rests on the highly plausible assumption that the 
effective range of interaction between two particles is 
much smaller than the linear dimensions of the con­
tainer. 

The whole program under consideration can be 
carried out in the momentum representation as well. For 
this purpose we introduce subsidiary operators uu*, 
defined by 

(k / , • • •k / ;k i* / , • • •k** / | £ / n*0 ) | k i , - . k j j k i * , •••kj*) 

= «3{ £ (k«'+k«*')- E (k«+ka*)} 
a, a* a, a* 

X ( k i V - - k / ; k i * V ••ki*' |«»*|ki,-- kr.ki*,- --kj*); 

(11) 

obviously the subsidiary operators are defined only for 
those momenta which satisfy the principle of mo­
mentum conservation. In terms of these subsidiary 
operators, the fugacity coefficients take the form 

6»»(oo)=(8^/B*I)-1 

X / (ki,- • -kjjki*,- • -ki*\uu*\kh' • k^ki*,- • -kj*) 

X&lkd?l*k. (12) 

All the foregoing relations are valid irrespective of the 
statistics obeyed by the particles. The question of the 
statistics assumes importance when we undertake the 
choice of the (J,/*)-body states (in the volume 0) with 
respect to which the matrix elements of the various 
operators are formed. In the case of the probability 
operator (2), the matrix elements would be given by 

( I V • • # ' ; ! * ' , • • -^* ' i WNN**\ 1,- • N-1*,- • •#*> 

i 

XfcU,- • -N\ 1*,- • -N*) exp(-/3E,) , (13) 

where the superscript q on WNN* signifies the quantum 
statistics obeyed (independently of each other) by the 
two kinds of particles and the symbol £ / on the right-
hand side implies a summation over all the states i 
which are properly symmetrized in view of the two 
statistics involved. The corresponding relation for a 

system with Boltzmann statistics would be 

(1',- • • N'\ 1*V • -N*'\ WNN*\ 1,. • -N\ I*,- • •#*> 

= L iMiV--i\r;l*V ••#*') 
a l l i 

X & ( 1 , - • -iV; I*, ' • -N*) e x p ( - ^ E i ) ; (14) 

now no superscript has been put on WNN* and the 
summation also extends over all the eigenfunctions fa. 
Further, the unstarred and starred integers which 
appear in (13) and (14) as arguments of the wave func­
tion fa and its complex conjugate fa stand, respectively, 
for the coordinates of the two kinds of particles. 

3. Utv* IN TERMS OF Unn* 

We now formulate the explicit rule which would 
enable us to express the cluster functions U n*q pertaining 
to the actual quantum-statistical system in terms of the 
corresponding ones, Unn*(n^l,n*^l*), for a Boltz-
mannian system. One can readily see that such relations 
for the functions Wnn*q and Wnn* follow immediately 
from equations like (13) and (14), viz., 

<1',- • V ; l*',- -n*f\Wnn*
g(l9'' -n; 1*,- • •»*> 

= E 7 ( p , ) 7* ( P * ' ) P / ^* / <i / , - - -^ ; 
pf,p*r 

l* / , - - -»* , |PFnn* | l l "-» ; l* , - - -n*>, (15) 

where P' is any one of the n! operators that permute the 
variables 1', • • -n', P*' is any one of the n*l operators 
that permute the variables 1*', • • • n*'y symbols {P') and 
(P*') stand for the order of the permutations (as re­
gards their being even or odd) while y and 7* are the 
respective indices of symmetry for the two components 
(being + 1 for a Bose-Einstein and —1 for a Fermi-
Dirac component). 

Now, the relations (15), coupled with those given by 
(4), (5), etc., both for the actual system and for the 
corresponding Boltzmannian system, enable one to 
eliminate the functions Wnn*q and Wnn* and obtain, as 
eliminant, relations connecting Un*q with Unn*. The 
final result can be stated in the form of the following 
rule.7 

Rule. To calculate Uu*q, we first distribute the 
integers 1, 2, • • • / ; !* , 2*, • • -I* into various groups such 
that there are maa* groups, each containing a unstarred 
integers and a* starred ones, with 

X amaa* = l, 
a=l,a*=0 

(16) 

a=0,a*=l 

maa*=0, 1, 2, • • •. (See, however, footnote 8.) A typical 

7 It may be mentioned here that the rule stated hereafter is 
valid in any representation. In particular, if one chooses to work 
in the momentum representation the variables 1, 2, • • •, 1*, 2*, • • • 
will stand for the particle momenta. 
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grouping of this sort may be represented as follows: 

{ ( a ) © - . •}{(c<r)(ef)--.){(ghi)' • • } • • • 
{(jk*)--}{(}mn*)---}{(op*q*)--')--

{(r*)(s*)'-}{(t*u*)(v*w*)'-}{(x*y*z*)- • • } • • , (17) 

where a, b, • • • ; k*, n*, • • • stand for the various 
integers. Within each round bracket the integers are 
arranged in an ascending order while within each curly 
bracket the round brackets are arranged such that their 
first integers follow an ascending sequence. In this 
arrangement the unstarred integers are at every stage to 
be written before the starred ones and the ordering rule 
given in the preceding sentence is to apply to the two 
kinds of integers separately. 

We then form a product of operators 

n<?',sV ••;?*',? 
n,n* 

\Unn*\p,q,-'">P*,q*>'-'), (18) 

where (p',qf, • • •) is any permutation of the coordinates 

P , <f: and similarly (p*',q*'t- • •) that of the coordi­
nates p* , q* while n and n* run through all values 
available in the grouping (17); this would give mnn* 
factors of the type Unn*. We then multiply the product 
(18) by the factor 7<*">7*<P*'> w n e r e (P') and (P*') are 
the orders, as regards evenness or oddness, of the re­
spective permutations (of all the coordinates appearing 
in the various bras with respect to those appearing in the 
kets) and then sum up over all such permutations in the 
bras which satisfy the condition that upon putting 
r' = r for all the (/+/*) variables, the summand does not 
break into factors which depend upon mutually exclusive 
coordinates.8 

Finally, we sum up all such expressions as obtained 
above over the different groupings (17). This total sum 
would be equal to UH*q. 

Illustration. For a system composed of free particles, 
we have in the Boltzmannian case 

<1V • -N'; I*', ' • 'N*'\WNN*\ I,- • -A7; 1*,- • -A7*) 

= <l , |W rio|l>---<iV / |PT1o|A7Xl* , |^oi|l*>---

X(X*'\Woi\N*). (19) 

Hence, one obtains from relations (4), (5), etc., 

Unn*=0 for (n+n*)>l. (20) 

In the case of quantum statistics we then have (see 
footnote 8) : 

Un*«=0, (21) 

if both I and I* are nonzero. Consequently, from (9), 

6n**=0, (22) 
8 This condition obviously implies that in case both / and /* are 

nonzero, a product of the type (Ui0- • • Uw) (Uoi• • • Uoi) cannot be 
considered; it must contain at least one factor Unn* such that both 
n and n* are nonzero. 

unless either 1=0 or l* = 0. Equation (6) then leads to 
the result (for Q —> <x>) 

p/kT=Zbioqzl+ Z Jo****'*, (23) 

that is, the law of partial pressures is obeyed. An ex­
plicit evaluation of the coefficients bio9 and b0i*

q for the 
case of an ideal Bose or Fermi gas is quite straight­
forward. 

4. Unn* AND THE BINARY KERNELS 

We first note that the functions Unn* and Wnn* can be 
given a diagrammatic representation in the same 
manner as the corresponding functions for a single-
component system. Further, the functions Unn* can be 
expressed in terms of a set of binary kernels (three in the 
present case), again on the same lines as in the pure case. 
Equations (5), for instance, give 

^2o(/5) = exp(-/3fi r
2 0)-exp[(+/5/2W)V1

2] 

Xexp[(+/5/2w)V2
2], (24a) 

f/11(/5) = exp ( - / ?F 1 1 ) - exp [ (+^ /2 W )V 1
2 ] 

Xexp[(+^/2w*)V1*2] , (24b) 
and 

tf 02 03) = exp ( - pHn) - exp[ (+0/2m*) Vx*
2] 

Xexp[(+0/2m*)V2*2]. (24c) 

Defining the binary kernels by the two-body relations 

(25) 
B(p) = -VW(fi) 

= -Vexp(-0H), 

and taking into account (24), one can write 

dU2Q(f3) 1 

dfi 2m 

dUu(fi) 

dp \2m 

(Vi*+V2*)tf2O03), (26a) 

1 1 \ 
- V ! 2 + Vif)Uu(p), (26b) 
\m 2m* I 

503 ; 1,2) = -

508; 1,1*) = 

and 
dU^% 1 

503 ; 1*,2*)= (V1*2+V2*2)^02(/3). (26c) 
dp 2m* 

I t is clear that the binary kernels can be explicitly 
evaluated, with the help of (24) and (26), from the 
solutions of the relevant two-body problems. 

Unn* can now be written down in terms of the three 
binary kernels introduced above: 

Un(p)=[ 0<*(P-ff\\)<*$-ff\l*)B(p',\,\*), (27) 
• /o 
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and corresponding relations for r2o03) and Uoi(0)'} 

Utl(0)= f d0ff dp" « 0 - / 3 " ; l )«05- /5 ' ; 2)a ,08-^ ' ; l ^ ^ O ' - i S " ; 2, l * ) ^ ^ ' ; l^coO?"; 1*; 
Jo Jo 

+ [ dff\ 0'u(fi-&\ l )«0S- |8 ' ; 2)w(/3-/3"; l*)S(/3'-<S"; 1, 2)B(fi"; 2,1 > ( £ " ; 1) 
./ 0 •/ 0 

+four other terms of order B2 

+te rms of higher order in By (28) 

and corresponding relations for Un(fi), L\o(P), and ones,9 respectively, then the three kernels to be evalu-
UQZ(/3) ; the operators <a(fi\i) and o)((3; i*) stand for a ted are 

PF10(/S) = exp[(/S/2w) v*i2], B2o(/3;iJ)J with parameters w and a, 
a n d

 TI. //CA r / / 3 / 0 *,_ 2n Bn((3;i,i*)y with parameters w, w*, and a, 
TF01 (0) s exp[ 03/2f»*) v>2 J, 

and 
respectively. Equations similar to (27) and (28) can also D / /a .* . ^ .,, , * 1 * 
t_ -^ j r i_- 1- i r J * £02(0; 2,7*), with parameters w* and a*. 
be written down for higher values of n and «*. r 

I t may be noted that the foregoing equations, being We give here the result for the "mixed" kernel Bu; 
operator equations, are valid in any representation. those for the "pure" ones, B2Q and J302, then follow 

We now evaluate explicitly the binary kernels (26) in directly from that for Bn by equating m and ni* and 
the particular case when the two-body interaction be- replacing a by a or a* as the case may be. 
tween the particles constituting the system is of the Carrying out the necessary calculations in the mo-
hard-sphere type. If we denote the hard-sphere diame- mentum representation, we obtain, in the mixed case, 
ters by a, <z*, and a in the case of particles of the first the following expression for the 5-state contribution to 
component, of the second component and the unlike the matrix elements of Un: 

<WMi*\Un\khki*) 
= 6 W + k i * ' - k i - k i * ) [ 4 7 ^ 

-sm(k'-k)atk' exp(-0E')+k e x p ( ~ - ^ ) ] + ( 4 / x ) 1 / 2 [ c o s ( ^ / + ^ ) a - c o s ( ^ , - ^ ) a ] 

Xlk'M($kfy2n)W tx^(-mr)-kM(Qky2^ exp( - /3£) ]} , (29) 
where 

k , =M(ki7w~ki*7w*) , k=M(k1 /w-k1*/w : f <)5 (30) 

jjL—mm*/(tn+fn*), (31) 

FJ^kx'yim+kWyifn*, E=k?/2m+kv?/2m*, (32) 
and 

M(y)= / exp(x2)dx. (33) 

Using (29) and the relation (26b) written in the momentum representation, 

d 
<ki',ki*' I Bn I ki,ki*>=—<ki',ki*'1 Un I k1,k1*)+£ /(k/,k1* /1 Un | k^ki*), (26b') 

dp 

one obtains for Bu, correct to second order in a, 

(k^ki/lJ5ii |ki fki»>= y C k i ' + W - k i - k ^ ) e x p ( - / ? £ ) + - ^ 5 3 ( k 1 ' + k 1 * / - k 1 - k 1 * ) exp(-$E) 

X ^ { M ^ 2 / 2 M ) 1 / 2 - K ^ 2 / 2 i u ) - 1 / 2 exp(^ 2 /2 M )} . (34) 
9 Indeed, in the case of hard-sphere interaction a = ${a-\-a*). For the sake of generality, however, we are retaining here the 

independent symbol a, especially in view of the possible extension of the present treatment to cases involving more realistic 
interactions. 
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From the foregoing expression, one can readily write 
down corresponding expressions for the pure kernels 
B2Q and BQ2. 

5. FUGACITY EXPANSION FOR A BINARY MIXTURE 
OF HARD-SPHERE SPINLESS BOSONS 

We are now in a position to evaluate explicitly, to the 
second order in the interaction parameters, the fugacity 
expansion for a two-component system composed of 
hard-sphere bosons. In the following treatment the 
particles will be assumed spinless. 

I t is most natural to split the fugacity series into 
three parts, viz., 

E bip**zlz*l*= E 6,o«**+ E bw*z*1* 

<J+/*)>1 

+ E bn*
qzlz*l\ (35) 

U * - l 

Results for the first two parts follow directly from the 
calculations of Lee and Yang4 (see LYII) for a single-
component system of bosons: 

t w = \-*tgw(z)-2{gzn(z)y{a/\) 

+8gi/2(s){g3/2(2)}2(VX)2 

+SF(z)(a/\y+0(a/X)^, (36) 
and 

£ 6oj.«**'*=x*T*v*(**)-2{«v*(s*)>*(a*A*) 

+ 8si/2(2*){g3 /2(2*)}2(a*A*)2 

+SF(z*)(a*/\*y+0(a*/\*)q, (37) 
where 

«»(*)= £*—*', (38) 
i—1 

and 

F(s) = E (rst)~^(r+s)~l(s+t)~lxr+^, (39) 

while X and X* are the respective thermal wavelengths 
given by 

X=(2*-/3/w),/2 and X*- (2TT0/W*)1/2. (40) 

In order to calculate the third part in (35) we recall (12) 
and (11); thus, one has to consider the functions lTu*q 

for /, Z*^ 1. Now, by virtue of the rule formulated in 
Sec. 3, we have (for 7 = 7*= 1) 

01* • • I 01} 

+ E K V • • r10}{^n}{r0i- • -UoMVo*} 
+Z{U1{)-'-i\o}{U21){UovC,i} 
+Z{Lrw - rlo}{Un}{L\v-Uoi} 

-(-terms of higher order. (41) 

The summations in (41) are to be carried over all 
permissible permutations of the variables appearing in 
the bras of the matrix elements of the various factors 
here. We evaluate the contributions to E bn*qzlz*1* 
from the various sums in (41), one by one. Calculations 
for this purpose are done throughout in the momentum 
representation. 

I. Consider a typical term in the first sum: 

{r 1 0- • • l\,W,i*'\ Un\ 1,1*>{£V • • Uoi}. (42) 

In order to first compute its contribution to Uu*q, defined 
in (11), we notice that (42) contains ( J+Z*- l ) 53 

functions. The one from Un can be replaced, through 
the use of the other 8Z functions, by 

n E (ka'+ka,')- L (k«+M), 
a,a* a,a* 

which has to be dropped while going from Uu*9 to uu*q. 
One then uses (12) and first, with the help of the 
(/+/*—2) 53 functions coming from the factors £/10 and 
UQI, carries out the integration over (/+/*—2) mo­
mentum variables, thus leaving an integration over ki 
and ki*. The contribution to bu*q from the typical term 
(42) is, therefore, of the form10 

C&r8/!/*!)--1 Al , l* |«n | 1,1*> 

Xexp{ - £ [ ( / - 1 ) £ ( 1 ) + ( f - 1)E(1*)]}, (43) 

where 

EQs) = k2/2m and E(k*) = £*2/2w*. (44) 

Since the permutations in the bras of the various factors 
in (42) are to be done among the unstarred and the 
starred variables separately, the total number of terms 
of the type (43) will be /!/*!. Thus, the total contribution 
to E bn*qzlz*1* from the first sum in (41) would be 

Sl=(S**)-i [(l,l*\uu\l,l*)^l(l)M(l*), (45) 
J 

wThere 

9frc(k) = z{ l - zexpC- /5£ (k ) ]} - 1 , (46) 
and 

9fn(k*) = z * { l - z * e x p [ - £ E ( k * ) ] } - . : (47) 

The evaluation of (45) can be done by taking the 

10 Henceforth, we use the notation lss-ki, l* = ki*, etc., and the 
convention that an integral sign not followed by any differential is 
meant to represent an integration over all the momentum variables 
appearing in the integrand. 
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diagonal elements of the matrix «n in the form [see (29)] 

a a2 1 / ( l+l*) 2 \ 
( l , l * l M l l l l , l * ) = - - - ^ e x p { - ^ £ ( l ) + £ ( l * ) ] } - — - - e x p ( - g ) 

47rV 2nmk \ 2(w+w*)/ 

X { 02 /2M)1 / 2+ (1 -pW/fiMipV/lfi1* exp(-0&2/2M)} +0(a3). (48) 

The quantities k and n appearing here have already been denned in (30) and (31). Carrying out the integrations 
in (45), one obtains 

oo / mr-jrm*s\1/2 

si=~a(mm*)m(m+M*)(2Ti3)~2gm(z)gm(z*)~U2MM* E zrz**(rs)-2[rs ) ,(49) 

correct to the second order in a. 
II. Let us now consider any term in the second sum 

in (41). Here again one of the two 83 functions associated 
with the factors Un can be written, with the help of 
other such functions present in the product, as 

53[E(k«'+k«*0~E(k«+k«*)] 
a, a* a, a* 

and dropped in going over to Un*q. We are now left with 

In view of the S3 functions appearing in (51) and (52), 
it is only the diagonal elements of the operators u\\ that 
are needed, and those too only in the first order of 
approximation in a. Hence, the evaluation of these two 
expressions is quite straightforward, with the result 

52i= (o2/2)ww*"l(w+w*)2(2Ti3)-5/2 

X{g3/2W}2{^/2(2*)-^/2(s*)}, (54) 
and 

*22= (O2/2)W-1 /2W*(W+W*)2(2T/5)-5 /2 

X{gm{z)-gm{z)}{gm(z^}\ (55) 

In the case of (53) one needs the off-diagonal elements 
of «n, which also are easily obtainable from (29). The 
expression then takes the form 

a2 f 
s23= / mi(l)3TC(2)9TC(l*)37l(2*) 

256TTV J 

Xexp{-/3[£(l)+£(2)+£(l*)+£(2*)]} 

XA~VM-e~*A~2)53( l+l*-2-2*), (56) 

(/+/*—4) 53 functions associated with the factors J710 

and UQI and one 53 function with the other factor Un. 
Consequently, (/+/*—4) integrations can be done 
straightaway, leaving thereby an integral over the re­
maining four momentum variables with the integrand 
containing one 8Z function. It is not difficult to see that 
the contribution from this sum to E bn*qzlz*1* is given 
by 

where 
A = £ ( l ) + £ ( l * ) - £ ( 2 ) - £ ( 2 * ) . (57) 

Explicit evaluation of (56), added to some other 
integrals obtained later, is done in the Appendix. 

III. We now consider the third sum in (41). About 
the 53 functions, we have here the same situation as in 
the case of the second sum. However, the fourfold 
integration that is left after the various S3 functions (ex­
cept the one still associated with the product IhoUn) 
are properly utilized, has three unstarred variables and 
one starred. The choice of three variables 1, 2, 3 out of 
the total number I can be made in 1(1— 1) (I—2)/6 ways 
and that of one variable 1* out of the total number £* in 
/* ways. Further, the remaining (I—3) unstarred vari­
ables would be mutually permuted (in the bras of the 
factors Uio) in (1—3)! ways, while the remaining (I*— 1) 
starred variables (in the bras of the factors £70i) in 
(/*— 1)! ways. Finally, it is not difficult to see that 
having made the choice of 1, 2, 3, and 1*, there are 12 
ways of constructing the product U2oUn. Hence, the 
contribution from the third sum to the coefficient bn*q 

^2 = ^21+^22+^23, (50) 
where 

^ M & r v A l , ! ^ (51) 

^2*=i(&r»)-1 /"<l,l*|«nl2,l*><2,2*|«ix| 1,2*>«»(1—2)9TC(l)OTr(2)grc(l*)srrc(2*), (52) 

and 

J2s=i (Sir3)-1 /"<1,1* | «n 12,2*><2,2* | «u 11,1*>«»(1+1*—2—2*)OT(l)OT(2)OTC(l*)9Il(2*). (53) 



S T A T I S T I C A L M E C H A N I C S OF A M A N Y - B O D Y S Y S T E M 951 

would be 

2(8TT3)-1 E / ' < 2 > 3 | « 2 O | 1 , 3 > < 1 , 1 * | « I I | 2 , 1 * > « 8 ( 1 - 2 ) e x p { - / 9 [ » 1 £ ( l ) + » 2 £ ( 2 ) + « 8 £ ( 3 ) + ( / * - l ) £ ( l * ) ] } , (58) 
ni.n2.n3 J 

where the summation extends over all integers nh n2,nz^ 0, satisfying the condition w i + ^ 2 + w 3 = I— 3.The contribu­
tion to Y, bn*9zlz*1* is, therefore, 

= 4aanwi*m (tn+m*) {2^)-hl2lgi,2 (s) - g3/2 0O]g3/2 (2)^/2 (z*). (59) 

IV. One calculates the contribution from the fourth sum in (41) in the same manner as in the case of the third 
sum. The result comes out to be 

5 4 = 4 a * < z w 1 V ( m + m * ) ( 2 T / ^ (60) 

V. In order to evaluate the fifth sum in (41) we have variable appears in both the B's, 
first of all to determine the momentum representation of (\2l*\u 1121*) 
U21. To second order, this is given by the first six terms ' ' x ' 
of the expansion (28). These terms are in one-to-one &" n0 n r w i \ . w » \ » wi* \ -n /*o\ 
correspondence with the first six diagrams for the = ^ - ^ e x p { - 0 [ £ ( l ) + E ( 2 ) + E ( l * ) ] > , (62) 
representation of Uw given in Fig. 5 of LYI.4 To adapt 
those diagrams to the case of £/2i, one has just to replace whereas 
their coordinates 3 ' and 3 by 1*' and 1*, respectively. (2,l , l*|w2 i | 1,2,1*) 
Examining the six terms (or diagrams) one by one, we _2 

find that for the first four in which the starred variable _ r —8rE(l)+E(2)+E(l*)~]} 
appears only in one of the two B's, 167rV 

X A / - V A , - / 3 A , - 1 ) , (63) 

(1,2,1*| u2i\ 1,2,1*) with 

= (2,1,1* | u2l 11,2,1*) A ^ E ( l * ) + £ ( 2 ) - E ( l ) - E ( ( l * + 2 - l ) * ) . (64) 

2 Respective contributions to £ bu*qzlz*1* from the terms 
e x p { - / 3 [ £ ( l ) + £ ( 2 ) + £ ( l * ) ] } , (61) ° f t h e ^ P ^ d i s P l a y e d i n (61)> (62)> and (63) would be 

lforVw § i v e n b y 
55=551+55 2+553, (65) 

while for the fifth or the sixth, in which case the starred where 

and 

ad/32 r 
^5i=4(87r3)-1 / exp{-^[E( l )+E(2)+E( l*) ]}3H(l )9E(2)3H(l*) 

16ir4fj.tn J 

= 4aaw^*1/2(^+^*)(27r^)-6/2{g3/2(s)}2g3/2(2*), (66) 

a2/32 r 
JB2= (&T8)-1 J exp{-j8[£(l)+iS(2)+£(l*)]}9(n:(l)S3(rc(2)9frc(l*) 

32xV J 

= (aV2)^*~1 / 2(m+m*)2(2^)-^{g3 /2(2)}2g3/2(2*), (67) 

a? r 
553= / exp{-~ jS[£(l)+£(2)+E(l*)]}3fTl(l)2ai(2)9Tl(l*)A ,-2(^A ' - /3A ,-l), (68) 

12&rV J 

with A' as defined in (64). where 
VI. In order to evaluate the contribution to , *_ 1/9 *, , *N 

v- z. a J *?* r ^ • .-u • />HN J 56i=4a*am1/2w* (w+w*) 
X , 0 n * 9 z ^ from the sixth sum in (41) we proceed 
exactly in the same way as in the case of the fifth sum. X { i m *«" W«•/»<* " > <7 0 ' 
The result is 562= (d2/2)m~lf2m*(m+m*)2 

56=561+562+563, (69) X(2T0)-V2gm(z){gm(z*)}2, (71) 

ni.n2.n3
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and 

5 6 3 = = _ ! ! _ f e x p { ~ / 3 [ E ( l ) + £ ( l * ) + £ ( 2 * ) ] } ^ ( l ) m i ( l * ) ^ ( 2 * ) A / / - 2 ( ^ A ' , ~ - ^ A / / - - l ) , (72) 
128irV J 

with 
A"=E(l)+E(2*)-E(l*)-E((l+2*-l*)). (73) 

In the Appendix we have evaluated the integrals appearing in (68) and (72) added to the one appearing 
in (56). Combining the result thus obtained with the ones embodied in (49), (54), (55), (59), (60), (66), (67), 
(70), and (71), we finally obtain 

L Z>n*W*= £ {-^^/ /W / 2(Wf+Wy)(27T/3)-^3/2(2 l0^/2(2,) 

+4taiaijmtmjll2(tni+mj) (2wp)~bl2gy2 (zt)gm (zi)gm (zy) 

4 ^ a t 7 ^ w r 1 / 2 ( ^ + w y ) 2 ^ ^ 

+2ai^^Hfni+fni)(2irP)^iFii+ • • } , (74) 

wrhere now 

a i ^ a , a2=a*, aa—aa^a, 

and 

Z i '+V H-fiy* /? « £ , (75) 
r.M-i (rst)u*(r+s) r(s+t)+tij2s(t-r) 

with 
$%•/= (mi—mj)/ (mi+ntj). 

Equations (36), (37), and (74), taken together, then 
give the full fugacity expansion for the system under 
consideration. 

the summations are to be carried over all permissible 
permutations (in the sense of the rule relevant to a 
tertiary mixture) of the variables appearing in the bras 
of the matrix elements of the various factors here. 

We now evaluate, one by one, the contributions to 

£ biw'zWz**1** (77) 
i,i*,i**^i 

from the various sums in (76). Let us first consider a 
typical term in the first sum 

{tfioo- • • tfioo}<*V*,| Duo I l,l*>0'V**'i tfioi|2,l**> 

X{I/OIO---^OID}{^OOI---J7OOI>. (78) 

6. FUGACITY EXPANSION FOR A MULTICOMPONENT 
SYSTEM COMPOSED OF HARD-SPHERE 

SPINLESS BOSONS 

Let us now consider the effect of introducing more 
components into the foregoing system. I t is obvious that 
in the case of a three-component system the final result 
would consist of three "pure" parts like (36) or (37), 
three "mixed" ones like (74) and an extra one arising out 
of contributions from the second-order interactions in 
which all the three kinds of particles appear together. 

Denoting the various quantities corresponding to the 
third component by symbols carrying a double asterisk 
(**), one readily sees that the additional second-order 
terms in the expansion of the quantum-statistical func­
tion Un*i**Q in terms of the Boltzmannian functions 
Unn*n** would be (for all the three indices of symmetry 
being equal to + 1 ) 

In order to compute its contribution to the subsidiary 
operator uu*i**q

1 we notice that (78) contains in all 
(l+l*+l**— 2) 8d functions. One <53 function, belonging 
either to the factor Uno or Uioi, can be written (with the 
help of the other 5Z functions) as 

n E (k«'+k«*'+ka**') 

~ £ (k a+k a*+k a**)} (79) 
a,a*,a** 

and dropped in going from Uu*i**q to uu*i**q. We are 
then left with (l-\-l*+l**— 4) 53 functions associated 
with the factors UIQO, Z7oio, and UQ01 and one 53 function 

£{#ioo • • * *7ioo} {Uno) {Um) {Uoio • • • tf 010} {J7ooi • • • tf 001} 

+ £ { tf ioo • • • ^ 100} { Uno) {Uoio • • • tf 010} { # on} {tf ooi • • • ^001} 

+ E { ^ i o o - • •U10o}{U1Q1}{Uoio' "Uoio}{U0n}{Uoov • • tfooi} 

+ Z{^ioo- • • Um}{Ulu){Uoio- • • tfoioMPooi- * * Um) ; (76) 
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with the remaining factor. Consequently, for the de- an integral over the remaining four momentum variables 
termination of the contribution of this particular term to 1, 2, 1*, and 1**, with the integrand still containing one 
the fugacity coefficient bu*i**Q, (/+/*+/**—4) integra- 53 function. It is not difficult to see that the contribution 
tions can be carried out straightaway, leaving thereby from the first sum in (76) to bn*i**q would be 

(8*3)-1 £ /<2,1*|«IIO|1,1*X1,1**I«IOI|2>1**>«8(1-2) 

Xexp{ -0[»1E(1)+»2E(2)+ (/*- 1)E(1*)+ (***-1)£(1**)]}, (80) 

the summation extending over all integers nh n2^0, satisfying the condition wrfw2= I— 2. The contribution to the 
series expansion (77) is, therefore, 

57=(8^)-iAl,l*|«no|W^ (81) 

where the SflZ functions are defined by (46), (47), and another similar equation for the particles of the third kind. 
For the diagonal elements of WHO and umi we have expressions similar to the one given earlier for the function un; 
we have only to substitute the proper "reduced mass" and the proper "hard-sphere diameter" for the quantities y. 
and a. Equation (81) then gives 

exp{ -0[2£(1)+£(1*) + E(1**)]} {^(l)}23Tl(l*)37Z(l**) 
128x7/Xl2Ml3 J 

= auaiw~mm*il2m**^(m+m*)(m^ (82) 

Corresponding contributions from the second and the third sums in (76) would obviously be 

^ ^ a ^ V ^ V ^ ^ (83) 
and 

^ a i a ^ ^ * 1 ^ * * " ^ (84) 
respectively. 

We now consider the fourth sum in (76). The momentum representation of Um can easily be obtained by con­
sidering its expansion in terms of the various binary kernels. One thereby gets for the subsidiary operator 

(85) 

(86) 

/ a i 2 a 2 3 013^23 012013\ 0 2 

<1,1*,1**|«111|1,1*,1**)=( + + ) exp{-/3[£(l)+£(l*)+£(l**)]}, 
Vl2M23 M13M23 M12M13/167T4 

correct to the second order. The corresponding contribution to the series (77) would be 

Jio = ( + + ) / exp{-/8[£(l)+£(l*)+£(l**)]}9fn(l)9rc(l*)3n(l**) 

Vl2M23 M13M23 Hl2HlZ/12&W7J 

/#12#23 #13#23 tfl2#13\ 

Vl2M23 M13M23 M12M13/ 

Combining (82), (83), (84), and (86), one gets 

3 

i(2x/3)-6'2 £ aijajm?l2mrmmkl,2(mi+m3){mi+^ (87) 
*', j , k = 1 

as the total contribution to the fugacity expansion of the rectly because it is quite straightforward to see that, up 
system from the mutual interactions among all the to the order considered here, an addition of further corn-
three kinds of particles present. ponents to the tertiary system would not give rise to 

The full fugacity expansion in the case of a multicom- any new type of terms except the ones already con-
ponent system, correct to the second order in the sidered, but with the suffices permuted among the van-
interaction parameters, can now be written down di- ous components. However, before we write down the 
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final result, we will generalize our treatment to the case 
of particles obeying arbitrary statistics and having 
arbitrary spin values. 

7. PARTICLES WITH ARBITRARY SPIN 
AND STATISTICS 

The treatment given in the preceding sections can be 
readily generalized to the case where the particles 
constituting the system have arbitrary spin values. 
While considering this generalization one must naturally 
keep in mind the statistics governing the various com­
ponents. Now, since the z component of the particle spin 
is conserved, just as the momentum components are, the 
foregoing formalism requires only very formal alter­
ations, e.g., the arguments of the various state vectors 
must now include the spin coordinates along with the 
momenta and consequently, the integrations (over the 
various momenta) must be augmented by the summa­
tions (over the various spin coordinates). Next, because 
of the fact that the hard-sphere interaction is spin 
independent these alterations do not modify the previ­
ous results in any manner other than the introduction of 
certain new factors depending exclusively on the spins, 
and on the statistics, of the particles. In order to de­
termine these factors we proceed exactly in the manner 
of Lee and Yang4 (see LYII ) ; in practice, however, one 
may make use of the following working rule: 

Take any particular contribution (to the fugacity 
series), written after all the elementary integrations 
have been carried out to yield factors of the type 2RX(ki) 
and consider the group of variables appearing in the 
bras of the various matrix elements, which are yet 
present in the integrand, as a permutation of the 
variables appearing in the kets. One thus finds different 
permutation subgroups which are concerned with mutu­
ally exclusive variables. Write, for each of these sub­
groups the factor ( 2 / H - l ) where /* is the spin value of 
the particles (belonging, say, to the ith component) with 
which this particular subgroup is concerned.11 Next, for 
each of these subgroups, write the factor Y / P ) where 7; 
is the index of symmetry of the ith component and (P) 
is the order of the permutation involved. Finally, re­
place the factors 3ftl (kz) in the integrand by the gener­
alized factors 2fR/(k;), where 

Wf(ki) = zi{l-yiziexv[-l3E(ki)iy (88) 

or else replace, in the integrated result, the activity 
coefficients Zi by jiZ{ and write for each of the factors 
9fll(kt-) an extra factor 7*. 

Incorporating all these changes with respect to all the 
components i, the final result would become appropriate 
to the generalized situation under consideration. I t is 
not difficult to see that, in view of the aforelaid rule, the 
various results obtained above are modified in the 
following manner.1'2 

We thus find that the contribution si gets modi­
fied by the factor (27+1) (2 /*+1)77*, *2i bY ( 2 / + 1 ) 2 

X ( 2 / * + l ) 7 * , S22 by ( 2 / + l ) ( 2 / * + l ) 2 7 , and s2z by 
(27+1) (2 /*+1)77*. Next, one half of the contribution 
S3 gets multiplied13 by the factor ( 27+1) 2 (2 J*+1) 7 * 
and the other half by (2J+1) (2 /*+1)77* ; the weighted 
mean factor would thus be § ( 2 / + l ) ( 2 / + l + 7 ) 
X (2 /*+1)7* . Similarly, s4 gets modified by the factor 
i ( 2 / + l ) ( 2 / * + l ) ( 2 / * + l + 7 * ) 7 . Next, we come to the 
contributions s$ and s6. Here we find for sbi the weighted 
mean factor 

| [ ( 2 / + l ) 2 ( 2 / * + l ) 7 * + ( 2 / + l ) ( 2 / * + l ) 7 7 * ] 
= I (2J+1) (2J+1+7) ( 2 / * + 1 ) 7 * 

and similarly for Sei the factor 

i ( 2 / + l ) ( 2 / * + l ) ( 2 / * + l + 7 * ) r 

The relevant factors for s52 and s62 will be (2J+1) 2 

X ( 2 / * + 1 ) T * and ( 2 / + l ) ( 2 / * + l ) 2
T , respectively, 

while for both J 5 3 and $63 we shall have (27+1) 
X (2 /*+1)77*. 

Let us now consider the modification of the vari­
ous contributions evaluated in the preceding section. 
Referring to (80) and (81), one notes that the rele­
vant factor for the contribution S7 would be (27+1) 
X (2 /*+1) (2/**+1)77*7**. By symmetry, this very 
factor will go with the contributions s8 and s$. Further, 
one finds from (85) and (86) that Sio will also get 
multiplied by the same factor—and so will the final 
result (87). 

We are now in a position to write down the final, 
second-order, expression for the fugacity expansion of a 
quantum-mechanical system with v components. Com­
bining the various results obtained above, we finally get 

2<x i9> 1 

= E W 2 T / 3 ) ^ ( 2 / < + l ) 7 f e ^ 

+2^(wy2itf)(2J,+ l + 7 ^ ^ •. •] 
11 It may be noted that the various contributions, as written in the foregoing, have first to be split into certain, physically distinct, 

subcontributions before the above-mentioned factors are assigned. For J = 0, this splitting was not necessary. 
13 For the "pure" parts, the relevant factors have already been determined in LYII. 
13 Refer to (58), (59), and footnote 11. 
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Wt-(*wH-Wy)-]1/2 
•w,-wy(wt-+Wi)i1/2 f 1/*»»+*» A1/2 p 

(2Ji+l)(2Jj+l)yl-rJaij\ - - ( j gs/2(7^3/2(7y2y)+2^ • 
(2ir/3)' 

X (2/ t-+1+7t)Tigi/2 (y&i)gm (y&i)gw (yfij)+l^a 

2 \ 2TT/3 

mf&irp)2 J 

(27T/3)2 J 

( 2 / t + l)7i{g3/2 (Y;2; ) }2gi/2 (7iZi) 

+2o*i 

+ s -
i,j,k=l 2 

'mitnjnik~]112 

"mi{mi+m3)' 

- (2*-/3)2 . 

1/2 

F<s+-

(27T/3)3 
(2 / ,+1 ) (2 / y +1) ( 2 / * + I)7 i7i7 * 

x- (2irfi)nij 
-aij-aj'kgz/2 (y&i)gw (y&)gw (7 fcSfc) + • (89) 

where the symbol {la} stands for the totality of the One can eliminate from the (v+1) equations (93) and 
numbers Ji, - •-h and the free indices i, j , and k on the (94) the v quantities zh---zv and obtain thereby a 
right-hand side refer to the various components in the polynomial expansion for p/kT in terms of the quanti-
system. The algebraic functions appearing in the fore- ties Ph- • -Pv. The resulting polynomial can then be 
going expression are denned as follows: compared with the virial expansion 

gn(yiZi)= Hl~n(yiZi)1, (90) p/kT=ZPi+Z BijPiPj+ £ CijkPipjPk+--*, (95) 

Fi= L M ) ~ 1 / 2 ( r + ^ ) - 1 ( ^ + 0 - 1 ( 7 ^ ) r + a + < , (91) 
which, in view of the form of our result (89), may be 

r , « , f = l rewritten as 
and 

Fij= E irstr^(r+s)-Ky^)r+9(y^y 

X-

with 
Ui= (mi—mj)/(tni+fnj). 

, (92) 

P/*T= E Lf>i+BuPi2+CiiiPi*+ • • • ] 

+ E LBijPiPj+3CujPi2
Pj-\ ] 

i y£j jdk 

+ ]£ [CijkPipjpk-\ ~]-\ . (96) 
The other quantities appearing here have their usual 
meaning; in particular, an is the hard-sphere diameter 
for mutual interaction between a particle of the ith kind A little algebra gives the following relations between the 
and a particle of the j t h kind. Moreover, by notation, virial coefficients and the fugacity coefficients14: 

5 « = - ( i z , - i * ) - 2 ^ - 2 * , (97) 
8. THE VIRIAL COEFFICIENTS 

Having obtained an explicit expression for the fu- t3 * Zt=1 lj==1 li i = 1 ' ^ 
gacity expansion of the system under investigation, we Cm— (&zi==i,?)~4[4(6zi==2

<?)2— 2bii=zqbii^\q~], (99) 
can now readily evaluate the various virial coefficients. 
For this purpose, we first note that the equation of state Cm— 3 (bi~iqbij=iq)~ 
of this (infinitely large) system would be given by X[(^ilii=i5)2+4^zi==29^zlii=i^zi=ig(6zi===i9)"~1 

-2i I <_, . , ,_i«J I >_i«l (100) 

p/kT= £ ftlfrUsi'1-••*»'', (93) a n d 

C<yt=l(iI i_i«* ly_i«ft l»-i«)-1 I/„)=0 

along with the following set of v equations for the 
(partial) particle densities: +i,<iJ_i«Jiyi i t-1«(ijJ_i«)-1 

+A J < l t - i« i« , , t - i ' ( i i t - i« ) - I - i i ( J l »- i« ] . (101) 

Pff— ]C hb[iff]
qZil1- • -zv

lv;a — 1, 2, • • • i>, (94) 14To avoid complicated suffices for the specific b{i9)*'s we ex-
{̂ } =0 elude from the set {la} the mention of all those Vs which are equal 

2<r/ff>l to zero. 
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The various coefficients appearing on the right-hand 
sides of these relations can be readily obtained from 
(89) by expanding the algebraic functions there as 
power series in the activities z*; this is so because the 
region of interest in connection with the study of the 
virial coefficients is obviously the nondegenerate one, 
for which all 2t<<CL After some calculation, one obtains 
for the virial coefficients the following expressions: 

B i . -= (2 / < +l ) - 1 (2^ /« . - ) 8 / 2 

X [ - 2 - 5 / 2 7 . + ( 2 / , + l 4 - 7 l > , ( w , / 2 ^ ) 1 / 2 ] , (102) 

Bij=^aij(2TP)(mi+mj)/mtfnj, (103) 

C«i=(2 / £ +l )^ 2 (2 i r / J /w < )»C( l /8 -2 /3^) 
-2yi(2Ji+l+yi)at"(mi/2w0n (104) 

Ciij^-iai?yl{2Ji+\)~\2Trf$/md{2T$/nij), (105) 

and 
Ct-ifc = 0, (106) 

correct to the second order in the interaction parameters. 
We note that the "pure" virial coefficients, Ba and 

Cm, are exactly the same as one obtains in the case of a 
single-component system15; this is, of course, as ex­
pected. The influence of the mutual interactions be­
tween particles of different kinds shows itself in the 
"mixed" virial coefficients. The lowest "mixed" coeffi­
cient, Bij, which is found to be of the first order of 
magnitude, is completely independent of the spin and 
statistics of the particles involved; it rather depends 
only on the relevant interaction parameter and the 
thermal wavelength corresponding to the respective 
"reduced" mass. In the language of de Boer,16 one can 
say that this particular virial coefficient represents only 
the diffraction effects of quantum mechanics and not the 
symmetry effects of quantum statistics. 

The "mixed" coefficient of the next higher order, Cm, 
is only of the second order, its magnitude depending, 
apart from the mutual interaction parameter, on the 
two individual thermal wavelengths (which contribute 
equally to the diffraction effects) and also on the spin 
and statistics of the dominating component (which 
obviously contribute to the symmetry effects). 

Next, the coefficient C%jk is found to vanish so far as 
the order of our calculation goes. 

At this stage, it appears worthwhile to mention that 
the results of the present investigation should be capable 

Bose (unstarred): 

of generalization to the case of systems with interactions 
more realistic than the simple hard-sphere interactions 
considered here. This generalization, however, would be 
quite straightforward provided that the actual poten­
tials are such that they do not lead to the formation of 
two-body bound states but at the same time the relative 
kinetic energy of the motion of two particles is much 
smaller than the attractive potential energy between 
them. These two conditions, a moment's reflection will 
show, are quite compatible with each other. Under these 
circumstances the only modification one expects in the 
foregoing results would consist in replacing everywhere 
the hard-sphere diameters by the respective scattering 
lengths 

a ' = - l i m [ > o ( * ) / * l (107) 

where 770 (k) are the relevant phase shifts, corresponding 
to the two-body 5 state, for the potentials involved.17 

9. BOSE-EINSTEIN CONDENSATION IN A BINARY 
MIXTURE OF BOSONS AND FERMIONS 

In this section we consider the statistical behavior of 
a two-component mixture, one component consisting of 
bosons and the other of fermions, as we approach (from 
above) the region of the so-called Bose-Einstein phase 
transition. Of immediate interest in this connection is 
the determination of the effect of particle interactions on 
the values of the various parameters that characterize 
the onset of this transition. I t is easy to see that the fore­
going formulation is not suited to treat this particular 
phenomenon successfully because of the fact that the 
function 9TC(k) for the boson component exhibits a 
singularity at k = 0 as the corresponding z approaches 
unity. One therefore gets unnecessary infinities in the 
expressions for the various physical properties; however, 
these infinities, as has been shown by Lee and Yang5 in 
the case of a pure Bose gas (LYIV), are only artificial 
and can actually be circumvented by reformulating the 
theory in terms of average occupation numbers in mo­
mentum space. The phase transition is then charac­
terized by the appearance of a "singularity" in the 
ground-state occupation number of the system (assumed 
to be of an infinite extent). 

Adopting the procedure laid down in LYIV, we define 
for the system under discussion the average occupation 
numbers for two components as follows: 

00 00 Z'Z* 

Fermi (starred): 
z=iz*=o (/—l)!/*f 

E'<ki,- • -k^! ,k; ki*,- • -ki*| Uu*q\kh- -kj_i,k; kx*,- • -kj*); (108) 

<»*>= E E 
i - o i * - i / ! ( / * - ! ) ! 

L ' ( V * -k«; k i v * -ki*_i,k*| U&*\kh-- kr, k l V • - k ^ k * ) ; (109) 

16 See, e.g., A. Pais and G. E. Uhlenbeck, Phys. Rev. 116, 250 (1959). 
16 J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird, Molecular Theory of Gases and Liquids (John Wiley & Sons, Inc., New York, 

1954), Chap. 6. 
17 This statement is made in view of the results of an earlier investigation into a single-component system; R. K. Pathria and 

M. P. Kawatra, Progr. Theoret. Phys. (Kyoto) 27, 1085 (1962). 
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the primed summation in each of these two equations 
goes over all momenta except the one appearing on the 
left. As they must, the occupation numbers satisfy the 
following relations involving the grand partition func­
tion (G.P.F.): 

d 
E<»k> = * - ln (G .P .F . ) = flp, 
k dz 

with 

I > k * ) = s* ln(G.P.F.) = Qp*, 
k* as* 

I t may, however, be noted that at the transition point 

P X 3 =2.612+-- - . (118) 

On the other hand, for the Fermi part we have the result 

p * X * 3 = - 2 g 3 / 2 ( - s * ) + " - . (119) 

One can then readily write down for the equilibrium 
pressure of the system at the transition point 

(111) Pc/kT= {1.342\-*-2£5 / 2(-2*)\*-*} 
+ {2ap2X2-2dpp*X2+|a*p*2X*2}+- • •• (120) 

(110) 

ln(G.P.F.) = 
u*=o III* I 

d+i*)>\ 

•Tr(tf ,,*«). (112) 

Introducing the functions 

Jf(k) = s[ l+<* k>], 
nd 

Af(k*) = 2*{l-<»k*», 

(113) 

(114) 

the whole formulation can be recast in terms of these 
functions instead of the earlier ones. The phase transi­
tion would then occur at that value of z{ — zc) where the 
boson function M(0) becomes singular. In order to de­
termine the critical value ze, to the first order in the 
interaction parameters, we make use of the following 
relation, which can be shown to hold between the 9m and 
M functions: 

{ ^ ( k ^ - W k ) } - 1 

= E^(k){<k,ki |^2o |k ,k 1 >+<k 1 ,k |^ 2 0 |k ,k 1 )} 

+ZM(M(k ,k 1 * |67 1 1 | k , k 1 *) 
ki* 

+ t e r m s of higher orders. 

k i 

For a first-order calculation of the left-hand side here, 
one may substitute in the leading terms of the perturba­
tion expansion on the right-hand side the ideal gas result 
Af=3Tl. Considering the state k = 0 and the situation 
corresponding to the approach of the transition point 
{M(0) = 0(A7)}, we obtain for zc 

s r 1 - l = - 4 ( 2 / + l ) ( / + l ) ( a / X ) p \ " 

- ( 2 / + l ) ( 2 / * + l ) ( a / X ) p * X 3 + - - , (116) 

where X is the thermal wavelength corresponding to the 
reduced mass. For 7 = 0 and 7 * = l / 2 , corresponding 
to the physical case of a He4—He3 mixture, we get 

ze= l+4(a/X)PX3+2(a/X)p*X3+.. (117) 

One can then obtain the corresponding expressions for 
the various other physical quantities also. 

In order to make a complete study of the influence of 
the particle interactions on the low-temperature be­
havior of the system, it is obviously necessary to extend 
the foregoing investigation to temperatures below the 
transition point. For this purpose, however, one has to 
consider in detail the generalization of the so-called x 
ensemble introduced by Lee and Yang.18 Study in this 
direction is in progress. 

APPENDIX 

We evaluate here the integrals appearing in (56), 
(68), and (72) of the text. Since throughout the present 
investigation these integrals finally appear as a simple 
sum, they will not be considered here individually; 
rather we shall solve them together. 

Let us first interchange the variables 1 and 2 in the 
integrand of (68) and then introduce therein the 
integral 

r
5 3 ( 1 + 1 * _ 2 - 2 * M 2 * , 

(115) while A' (Eq. 64) is redefined as 

A ' = E ( l * ) + £ ( l ) - £ ( 2 ) -
= A. 

•E(2*) 
(121) 

Next, let us interchange in the integrand of (72) the 
variables 1* and 2* and insert therein the integral 

8*(l+l*-2-2*)d2, 

while A" (Eq. 73) is redefined as 

A" = £ ( l ) + E ( l * ) - E ( 2 * ) -
= A. 

-E{2) 
(122) 

Having done this the three integrals can be straight­
away combined, with the result 

128TTV 
e x p { - 0 [ E ( l ) + £ ( 2 ) + £ ( l * ) + £ ( 2 ^ ^ 

exp[/?£(2*)] exp[/3£(2)]\-i 
v 

( » 
X K e " A + ^ A - 2 ) + ( ^ A - i 3 A - l ) 

311(2*) 311(2) / J 
\dU2d\*d2*, (123) 

18 T. D. Lee and C. N. Yang, Phys. Rev. 117, 897 (1960). 
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where The expression (125) itself may therefore be replaced by 
A = £ ( l ) + £ ( l * ) - £ ( 2 ) - £ ( 2 * ) . (124) 

i ( e / 5 A + ( , - 0 A _ 2 ) + ( e 0 A _ / 3 A _ 1 ) Considering the factor inside the long bracket, viz, 

A(<,eA+e-0A_2)_2(e0A-/3A-l) yexp[^£(2*)] ) exp[>E(2)]^ 

exp[>£(2*)] exp[]3£(2)]\ 
+ (e' ,A-/?A-l) 

\ 0* z / . 
, (125) 

X[ + -) 

Now, proceeding along the sequence of steps similar to 

we . . note that since the other factors in the integrand of t h e o n e s indicated in LYII [Eqs. (74)-(77), etc.], we 
(123) are invariant under the interchanges 1 <-> 2, obtain 
l*+-» 2* (which involve the transformation A -> - A ) , 0W5/21-V _LV _J_V I / I I A \ 
we may replace the middle term in (125) by / = - ^ » * & » + » * ) 2 ( 2 i t f ) 5 / 2 [ S 0 + S i + S 2 ] , (126) 

- { ( e ^ - f i A - 1 ) + (e-^+/3A-1)} = - ( ^ A + < r ^ A - 2). where 

- (ao+/30+7o)1 / 2- M1 / 2- /3o/2(a0)1 / 2 

2 o = £ s«H-n2s*n3+»4 j ( 1 2 7 ) 
wi, na, (ffo/2)2 — «o70 

( a i + / 3 x + 7 i ) 1 / 2 - ( a i ) 1 / 2 - /3 i /2 (a ! ) 1 / 2 

S l = E zni+n22*n3j ( 1 2 8 ) 
m, »2,«3=1 (/3i/2)2 — Q!i7i 

- ( « 2 + ^ 2 + 7 2 ) 1 / 2 ~ ( a 2 ) 1 / 2 - f t / 2 ( a 2 ) 1 / 2 

S2 = E Snis*«3+n4j (129) 
«l ,n 3 ,n 4 - l ( /3 2 /2 ) 2 — a 2 7 2 

ao=w(wiW3^4+W2W3W4)+w*(wi^2W3+Wi»2W4), obviously be invariant. However, as a result of these 
j8o= (ff i+w*)(»i»t-»i»4)+(w-»*)(»2ff8-nin4), (130) interchanges the quantity £0 in the summand changes 

f . N */ I \ sign while ao and 70 remain unchanged. Consequently, 
To= - « ( n x + n 0 - » (*+»«), t h e t h i r d p a r t o f S o ( i n v 0 i v i n g a n o d d f u n c t i o n of ft) 
while would identically vanish. The corresponding parts of 

(<*i,0i,7i) = (ao,/3o57o)n4«o, (131) Si and S2 give 
and 

(«2 i /32 ,T2)=(a0 j /J0)7o)n2=0 . (132) 2«Pm«*(«+»*)(2^)-« '«{»*->/*i?1+«-WF2] , (133) 
For interchanges tii <-» n2, nz <-> w4, the sum S 0 should where 

00 Wi+f^2 
Fi = E (nin2nz)-

1/2 (m+m)'1 s«i+«2S*n3? 
ni ,n 2 ,n 3 - l Wl(W2+W3) + f2W2(W3-- Wi) 

and 
* nz—fw4 

F 2 = E ( ^ 1 ^ 3 W 4 ) " 1 / 2 ( ^ 3 + ^ 4 ) ~ 1 • s ni s *„3+« 4 j 

ni,n3 ,n4=l ^ 3 ( ^ l + ^ 4 ) + f 2 ^ 4 ( ^ l ~ ^3) 

with 
f = (m-—m*)/(m+m*). 

The remaining parts of So, Si, and S2 may now be Now, the first part of the quadruple sum in S becomes, 
combined, with the result under the transformation 

- («0+/3o+7o)1/2-(ao)1/2 »i = Wi'+l, H2 = » 2 ' - 1 , 
2 = E 2ni+n22*n3+n4 

m.*i-i (R o/2)2—ao7o nz = nz'+l, nA=n± — 1, 
«2 , M4 = 0 

- («3+/33+73)1/2-(a3)1/2 - W ) 1 / 2 , ^ , * , ^ , 
- E Sni3*"3, (134) E ; s»l+«2 s*n3'+«4'? 

»i.«3=i ( i s 3 /2)2- a 3 T 3 »£...;-o ( ^ o ' ^ - a o V 
with 

(«3,ft,73)= («o,^oJ7o)n2=n4-o. (135) where a0', /3</ and 70' are the same functions of w/, ra2', 
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nzy and n* as a0, Po and 70 are of nh n2y »», and »4. Be- sum would exactly cancel with the second part of the 
cause of the symmetry of the summand with respect to quadruple sum in 2. We are thus left with only the 
the interchanges of suffices 1 <-> 2, 3«-» 4, the foregoing double sum in (134) which is found to be 

-4(w+w*)-3 /2 E (n^-ntiM ) zn*z**\ 

Introducing the constants appearing in (126), this gives 

00 / mr+m*s\m 

-^mm*(m+m*)m(2ir^)-m £ ( rsW rs ) zrz*\ 
r,«-i \ m+m* / 

The final result for the integral / is then equal to the sum of (133) and (137). 

(136) 

(137) 

P H Y S I C A L R E V I E W V O L U M E 1 2 9 , N U M B E R 2 15 J A N U A R Y 1 9 6 3 

Quantum Cell Model for Bosons 
H. A. GERSCH AND G. C. KNOLLMAN* 
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(Received 2 August 1962) 

An approach is presented toward validating the assumption that the ground state of bosons with repulsive 
interactions at low densities is characterized by macroscopic occupation of the zero momentum level. We 
use a cell model which affords a simple description of the high-density region, where fluctuations in number 
density are small and where no single-particle level is macroscopically occupied. As the density decreases, 
fluctuations increase, and we reach a critical density at which the small fluctuation approximation becomes 
unstable with respect to plane wave states of zero momentum. At this critical density, the single-particle 
energy gap disappears, and the dependence of excitation energy on momentum changes from quadratic to 
linear, for small values of momentum. 

I. INTRODUCTION 

THE model of N hard-sphere bosons at low densities 
has been very successful in predicting many of 

the physical properties of a superfluid.1 Of significance 
in theoretical treatments is the role played by the 
assumption that in the presence of the repulsive inter­
actions a finite fraction of particles occupy the state 
with zero linear momentum. In the second quantized 
formulation of the model, this assumption facilitates 
reduction of the Hamiltonian operator from quadri-
linear to quadratic form in plane wave creation and 
destruction operators.1 In a configurational-space 
approach, it enables one to calculate the effects of 
interaction using the ring integrals of Mayer cluster 
theory.2 

This assumption regarding a macroscopically occu­
pied level is physically plausible for repulsive inter­
actions at low particle densities. Moreover, it provides 
a self-consistent theoretical development, that is, once 
it is invoked, the theory shows that the interactions do 

* Present Address: Lockheed Missiles and Space Company, 
Palo Alto, California. 

*N. N. Bogoliubov, J. Phys. (U.S.S.R.) 2, 23 (1947); K. A. 
Brueckner and K. Sawada, Phys. Rev. 106, 1117 (1957): T. D. 
Lee, K. Huang, and C. N. Yang, ibid. 106, 1135 (1957). 

2 H. A. Gersch and V. H. Smith, Phys. Rev. 119, 886 (1960). 

not destroy the macroscopic single level occupation. 
However, the validity of the assumption has never 
been proved. 

Our aim here is to attempt to indicate with a simplified 
model how the condensation in momentum space may 
result spontaneously from the theory without having 
to assume it at the outset. Such is the state of affairs 
in the treatment of thermodynamic properties charac­
terizing an ideal Bose gas.8 There, at sufficiently high 
temperatures, no single-particle level is macroscopically 
occupied. As the temperature is decreased below a 
critical value, the requirement concerning a fixed 
number of particles comprising the system forces a 
finite fraction of the particles to occupy the lowest 
momentum level. One thus obtains a complete descrip­
tion of the ideal gas of bosons in both the region of no 
macroscopic occupation of a single-particle level 
(normal region) and the region of macroscopic occu­
pation of the single-particle zero momentum level 
(superfluid region). It would, of course, be pleasing to 
have the same complete description for bosons with 
repulsive interactions. We have not developed such an 
inclusive treatment in this work, but rather have 
observed the ground state of the system starting from 

a F. London, Phys. Rev. 54, 948 (1938). 


